
CS 267 Applications of Parallel Computers

Lecture 5: More about
Distributed Memory Computers

and Programming

David H. Bailey

Based on previous notes by James
Demmel and David Culler

http://www.nersc.gov/~dhbailey/cs267

Recap of Last Lecture

°Shared memory processors
• Caches in individual processors must be kept

coherent -- multiple cached copies of same
location must be kept equal.

• Requires clever hardware (see CS258).

• Distant memory much more expensive to access.

°Shared memory programming
• Starting, stopping threads.

• Synchronization with barriers, locks.

• OpenMP is the emerging standard for the shared
memory parallel programming model.

Outline

° Distributed Memory Architectures
• Topologies

• Cost models

° Distributed Memory Programming
• Send and receive operations

• Collective communication

° Sharks and Fish Example
• Gravity

History and Terminology

Historical Perspective

° Early machines were:
• Collection of microprocessors.

• Communication was performed using bi-directional queues
between nearest neighbors.

° Messages were forwarded by processors on path.

° There was a strong emphasis on topology in
algorithms, in order to minimize the number of hops.

Network Analogy

° To have a large number of transfers occurring at
once, you need a large number of distinct wires.

° Networks are like streets:
• Link = street.

• Switch = intersection.

• Distances (hops) = number of blocks traveled.

• Routing algorithm = travel plan.

° Properties:
• Latency: how long to get between nodes in the network.

• Bandwidth: how much data can be moved per unit time:

• Bandwidth is limited by the number of wires and the rate at which
each wire can accept data.

Characteristics of a Network

° Topology (how things are connected)
• Crossbar, ring, 2-D and 2-D torus, hypercube, omega network.

° Routing algorithm:
• Example: all east-west then all north-south (avoids deadlock).

° Switching strategy:
• Circuit switching: full path reserved for entire message, like the

telephone.

• Packet switching: message broken into separately-routed
packets, like the post office.

° Flow control (what if there is congestion):
• Stall, store data temporarily in buffers, re-route data to other

nodes, tell source node to temporarily halt, discard, etc.

Properties of a Network

° Diameter: the maximum (over all pairs of nodes) of
the shortest path between a given pair of nodes.

° A network is partitioned into two or more disjoint
sub-graphs if some nodes cannot reach others.

° The bandwidth of a link = w * 1/t
• w is the number of wires

• t is the time per bit

° Effective bandwidth is usually lower due to packet
overhead.

° Bisection bandwidth: sum of the bandwidths of the
minimum number of channels which, if removed,
would partition the network into two sub-graphs.

R
o
u
ting

a
nd

 co
n
tro

l
h
ea

de
r

D
ata

p
ayloa

d

E
rro

r co
de

T
ra

ile
r

Network Topology
° In the early years of parallel computing, there was

considerable research in network topology and in
mapping algorithms to topology.

° Key cost to be minimized in early years: number of
“hops” (communication steps) between nodes.

° Modern networks hide hop cost (ie, “wormhole
routing”), so the underlying topology is no longer a
major factor in algorithm performance.

° Example: On IBM SP system, hardware latency
varies from 0.5 usec to 1.5 usec, but user-level
message passing latency is roughly 36 usec.

However, since some algorithms have a natural
topology, it is worthwhile to have some background
in this arena.

Linear and Ring Topologies

° Linear array

• Diameter = n-1; average distance ~ n/3.

• Bisection bandwidth = 1.

° Torus or Ring

• Diameter = n/2; average distance ~ n/4.

• Bisection bandwidth = 2.

• Natural for algorithms that work with 1D arrays.

Meshes and Tori

° 2D
• Diameter = 2 * n
• Bisection bandwidth = n

 2D mesh 2D torus

° Often used as network in machines.
° Generalizes to higher dimensions (Cray T3D used 3D Torus).
° Natural for algorithms that work with 2D and/or 3D arrays.

Hypercubes

° Number of nodes n = 2d for dimension d.
• Diameter = d.

• Bisection bandwidth = n/2.

° 0d 1d 2d 3d 4d

° Popular in early machines (Intel iPSC, NCUBE).
• Lots of clever algorithms.

• See 1996 notes.

° Greycode addressing:
• Each node connected to

d others with 1 bit different.
001000

100

010 011

111

101

110

Trees

° Diameter = log n.

° Bisection bandwidth = 1.

° Easy layout as planar graph.

° Many tree algorithms (e.g., summation).

° Fat trees avoid bisection bandwidth problem:
• More (or wider) links near top.

• Example: Thinking Machines CM-5.

Butterflies

° Diameter = log n.

° Bisection bandwidth = n.

° Cost: lots of wires.

° Used in BBN Butterfly.

° Natural for FFT.

O 1O 1

O 1 O 1

Evolution of Distributed Memory Multiprocessors

° Special queue connections are being replaced by
direct memory access (DMA):

• Processor packs or copies messages.

• Initiates transfer, goes on computing.

° Message passing libraries provide store-and-forward
abstraction:

• Can send/receive between any pair of nodes, not just along one
wire.

• Time proportional to distance since each processor along path
must participate.

° Wormhole routing in hardware:
• Special message processors do not interrupt main processors

along path.

• Message sends are pipelined.

• Processors don’t wait for complete message before forwarding.

Performance Models

PRAM

° Parallel Random Access Memory.

° All memory access operations complete in one clock
period -- no concept of memory hierarchy (“too good
to be true”).

° OK for understanding whether an algorithm has
enough parallelism at all.

° Slightly more realistic: Concurrent Read Exclusive
Write (CREW) PRAM.

Latency and Bandwidth Model

° Time to send message of length n is roughly.

° Topology is assumed irrelevant.

° Often called “α−βα−βα−βα−β model” and written

° Usually αααα >> ββββ >> time per flop.
• One long message is cheaper than many short ones.

• Can do hundreds or thousands of flops for cost of one message.

° Lesson: Need large computation-to-communication
ratio to be efficient.

Time = latency + n*cost_per_word
 = latency + n/bandwidth

Time = αααα + n*ββββ

α +α +α +α + n∗β << ∗β << ∗β << ∗β << n∗(α + 1∗β)∗(α + 1∗β)∗(α + 1∗β)∗(α + 1∗β)

Example communication costs

° α α α α and ββββ measured in units of flops, ββββ measured per 8-byte word

Machine Year α β Mflop rate per proc

 CM-5 1992 1900 20 20
 IBM SP-1 1993 5000 32 100
 Intel Paragon 1994 1500 2.3 50
 IBM SP-2 1994 7000 40 200
 Cray T3D (PVM) 1994 1974 28 94
 UCB NOW 1996 2880 38 180

 SGI Power Challenge 1995 3080 39 308
 SUN E6000 1996 1980 9 180

A more detailed performance model: LogP

° L: latency across the network.

° o: overhead (sending and receiving busy time).

° g: gap between messages (1/bandwidth).

° P: number of processors.

° People often group overheads into latency
(α, βα, βα, βα, β model).

° Real costs more complicated -- see Culler/Singh,
Chapter 7.

P M P M

os or

L (latency)

Message Passing Libraries

° Many “message passing libraries” available
• Chameleon, from ANL.

• CMMD, from Thinking Machines.

• Express, commercial.

• MPL, native library on IBM SP-2.

• NX, native library on Intel Paragon.

• Zipcode, from LLL.

• PVM, Parallel Virtual Machine, public, from ORNL/UTK.

• Others...

• MPI, Message Passing Interface, now the industry standard.

° Need standards to write portable code.

° Rest of this discussion independent of which library.

° Will have a detailed MPI lecture later.

Implementing Synchronous Message Passing

° Send operations complete after matching receive
and source data has been sent.

° Receive operations complete after data transfer is
complete from matching send.

 source destination

1) Initiate send send (Pdest, addr, length,tag) rcv(Psource, addr,length,tag)

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive tag match

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

 time

 data-xfer

Example: Permuting Data

° Exchanging data between Procs 0 and 1, V.1: What goes wrong?

Processor 0 Processor 1
 send(1, item0, 1, tag1) send(0, item1, 1, tag2)
 recv(1, item1, 1, tag2) recv(0, item0, 1, tag1)

° Deadlock
° Exchanging data between Proc 0 and 1, V.2:

 Processor 0 Processor 1
 send(1, item0, 1, tag1) recv(0, item0, 1, tag1)
 recv(1, item1, 1, tag2) send(0,item1, 1, tag2)

° What about a general permutation, where Proc j wants to send to
 Proc s(j), where s(1),s(2),…,s(P) is a permutation of 1,2,…,P?

Implementing Asynchronous Message Passing

° Optimistic single-phase protocol assumes the
destination can buffer data on demand.

 source destination

1) Initiate send send (Pdest, addr, length,tag)

2) Address translation on Pdest

3) Send Data Request data-xfer-request

 tag match

 allocate

4) Remote check for posted receive

5) Allocate buffer (if check failed)

6) Bulk data transfer

 rcv(Psource, addr, length,tag)

 time

Safe Asynchronous Message Passing

° Use 3-phase protocol

° Buffer on sending side

° Variations on send completion

• wait until data copied from user to system buffer

• don’t wait -- let the user beware of modifying data

 source destination

1) Initiate send send (Pdest, addr, length,tag) rcv(Psource, addr, length,tag)

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive return and continue tag match

 record send-rdy computing

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

 time

 data-xfer

Example Revisited: Permuting Data

° Processor j sends item to Processor s(j), where
 s(1),…,s(P) is a permutation of 1,…,P

Processor j
 send_asynch(s(j), item, 1, tag)
 recv_block(ANY, item, 1, tag)

 ° What could go wrong?
° Need to understand semantics of send and receive.
° Many flavors available.

Other operations besides send/receive

° “Collective Communication” (more than 2 procs)
• Broadcast data from one processor to all others.

• Barrier.

• Reductions (sum, product, max, min, boolean and, #, …), where #
is any “associative” operation.

• Scatter/Gather.

• Parallel prefix -- Proc j owns x(j) and computes y(j) = x(1) # x(2) #
… # x(j).

• Can apply to all other processors, or a user-define subset.

• Cost = O(log P) using a tree.

° Status operations
• Enquire about/Wait for asynchronous send/receives to complete.

• How many processors are there?

• What is my processor number?

Example: Sharks and Fish

° N fish on P procs, N/P fish per processor
• At each time step, compute forces on fish and move them

° Need to compute gravitational interaction
• In usual n^2 algorithm, every fish depends on every other fish.

• Every fish needs to “visit” every processor, even if it “lives” on
just one.

° What is the cost?

Two Algorithms for Gravity: What are their costs?

Algorithm 1

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to N
 for k = 1 to N/P, Compute force of Tmp(k) on Fish(k)
 “Rotate” Tmp by 1
 for k=2 to N/P, Tmp(k) <= Tmp(k-1)
 recv(my_proc - 1,Tmp(1))
 send(my_proc+1,Tmp(N/P)

Algorithm 2

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to P
 for k=1 to N/P, for m=1 to N/P, Compute force of Tmp(k) on Fish(m)
 “Rotate” Tmp by N/P
 recv(my_proc - 1,Tmp(1:N/P))
 send(my_proc+1,Tmp(1:N/P))

What could go wrong? (be careful of overwriting Tmp)

More Algorithms for Gravity

° Algorithm 3 (in sharks and fish code):
• All processors send their Fish to Proc 0.

• Proc 0 broadcasts all Fish to all processors.

° Tree-algorithms:
• Barnes-Hut, Greengard-Rokhlin, Anderson.

• O(N log N) instead of O(N^2).

• Parallelizable with cleverness.

• “Just” an approximation, but as accurate as you like (often only a
few digits are needed, so why pay for more).

• Same idea works for other problems where effects of distant
objects becomes “smooth” or “compressible”:

- electrostatics, vorticity, …

- radiosity in graphics.

- anything satisfying Poisson equation or something like it.

